Building the Regression Model

C. Andy Tsao

Department of Applied Math, National Dong Hwa University

Outline

- Overview
- Selection of Predictors

Diagnosis

- Remedial Measure
- Validation

Learning from Data

- Controlled Experiments (F = ma, PV = nRT)
- Controlled Experiments with Supplemental variables
- Confirmatory observational studies
- Exploratory <u>observational</u> studies

Data Collection and preparation

- How the data are collected? (Design, Nature of the study)
- Data consistency. (Plots and numerical summaries, logical relations)
- Is this data analysis-ready? (Format checking, file conversion, etc.)
- **GIGO** (Garbage In; Garbage Out.)

Objectives

- Reduction of explanatory or predictor variables Find parsimonious model with good explanatory/prediction power. Trade-off.
- Model refinement and selection Choosing from many "good" models, checking the adequacy of the models, sensitivity of the models, fixing the weak spots.
- Model Validation Ready to explain what's going on? Ready to predict what the future will be?

Trade-off

Best explanatory/prediction power vs. Parsimony Criteria and how to use them? "Good" models?

Selection-I.1

• $R_p^2 = 1 - \frac{SSE_p}{SSTO}$. ID those with substantial increases. NOT the biggest one.

•
$$R_a^2 = 1 - (\frac{n-1}{n-p}) \frac{SSE_p}{SSTO} = 1 - \frac{MSE_p}{SSTO/(n-1)}$$

 $MSE_p = SSE_p/(n-p).$
ID those with smaller/smallest MSE_p .

•
$$\Gamma_p = \frac{E(SSE_p)}{\sigma^2} - (n-2p).$$

 $\widehat{\Gamma_p} = C_p = \frac{SSE_p}{MSE(X_1, \dots, X_{p-1})} - (n-2p)$
ID those Small C_p AND $C_p \approx p.$

• $PRESS_p = \sum_{i=1}^{n} (Y_i - \hat{Y}_{i(i)})^2$. Prediction Sum of Squares. ID those with small $PRESS_p$

Selection-I.2

- AIC: Akaike's information criterion $AIC_p = -2 \ln likelihood + 2p \propto n \ln SSE_p - n \ln n + 2p.$ ID models with smaller AIC.
- BIC (or SBC in Text): Schwartz' Bayesian information criterion.

 $BIC_p = -2 \ln likelihood + p \ln n \propto$ $n \ln SSE_p - n \ln n + (\ln n)p.$ ID models with smaller BIC.

Does these criteria make sense? Increasing/Decreasing in ..

Selection-II

All-subset Selection $Y|X_1, \cdots, X_{p-1}$

Best among all 2^{p-1} combinations. Forward stepwise selection and other search procedures

- Forward/Backward Stepwise Selection: One at a time, marginal effect, partial *F*-test
- Forward/Backward Selection: Marginal effect, partial (group) *F*-test

Selection-III

General Linear Test Approach Given $Y|X_1, \dots, X_2$ Should X_3, \dots, X_5 be added?. Testing H_0 : Reduced vs H_1 : Full

- Fit the full model ($Y|X_1, \dots, X_5$) and get $SSE(F), df_F$
- Fit the *reduced* model ($Y|X_1, \dots, X_2$) and get $SSE(R), df_R$
- Calculate

 $F^* = \frac{SSE(R) - SSE(F)}{df_R - df_F} / \frac{SSE(F)}{df_F} \sim F_{df_R - df_F, df_F}$ Then perform a α level test.

Comments

- No easy, clear-cut way to ID the best model
- Usually, many "good" models rather than one best model
- Respect the hierarchy of models
 - Higher order terms < lower order terms $(X^4 < X^1)$
 - Interaction terms < main effect terms $(X_1X_2 < X_1 \text{ or } X_2)$
- Chapter 10 Variable Selection of Faraway, J. (2002). Also his Chapter 11 is highly recommended

Diagnosis

Basics

Checking the adequacy of a regression model

- Improper functional form of a predictor
- Outliers
- Influential observation
- Multicollinearity

Basics

- Heuristics: When the model is correct and parameters are estimated correctly $e_i \approx \epsilon_i$
- Assumption to be checked: $\epsilon_1, \cdots, \epsilon_n \sim N(0, \sigma^2)$
- Various checks
 - Indepedence among errors (sequence plot, time plot), common variance (original, stardardized), normality (normal probability plots)
 - Independence of E(Y|x) (residuals vs. fitted values), Independence of X (vs. x)

Improper functional form

- Goal: Detect the suitable form of *Y* vs X_q while X_1, \dots, X_{q-1} in the model.
- Partial Regression Plots: e(Y|X₁, ..., X_{q-1}) vs. e(X_q|X₁, ..., X_{q-1}).
 e(Y|X₁, ..., X_{q-1}): residual of Y regresses on X₁, ..., X_{q-1}
 - $e(X_q|X_1, \cdots, X_{q-1})$: residual of X_q regresses on X_1, \cdots, X_{q-1}
- Why bother?

Outliers-I

The model (fitted) shouldn't be affect by just few points.

- LSE is EXTREMELY sensitive to outliers. Example.
- Detection: Residual-based tests and plots towards outlying Y. Why? What to expect?
 - Semistudentized residual: Same scale (Naive).

$$e_i^* = \frac{e_i}{\sqrt{MSE}}, e_i = Y_i - \hat{Y}_i$$

Studentized residual: In the same scale (Refined).

$$r_i = \frac{e_i}{\sqrt{MSE(1-h_{ii})}}$$
 since

$$\sigma^2(e) = \sigma^2(I - H), \quad H = X(X'X)^{-1}X'.$$

• Deleted Residuals: With or Without You. Outlying *Y*. $d_i = Y_i - \hat{Y_{i(i)}}$

Outliers-II

- Studentized Deleted Residual: $t_i = \frac{d_i}{s(d_i)}$ where $s(d_i) = \sqrt{MSE_{(i)}(1 - h_{ii})}$
- $I At matrix Leverage values \rightarrow Outlying X$
 - $0 \le h_{ii} \le 1$, $\sum_{i=1}^{n} h_{ii} = p$.
 - $\bar{h_{ii}} = \frac{p}{n}$. 2p/n, extreme h_{ii} , outside (0.2, 0.5)
 - $h_{new} = X'_{new} (X'X)^{-1} X_{new}$ for hidden extrapolation.

Influential obs

•
$$(DFFITS)_i = \frac{\widehat{Y_i} - \widehat{Y_{i(i)}}}{\sqrt{MSE_{(i)h_{ii}}}}$$
 Flag: If $|DFFITS| > 1$ for
small/medium data set or $> 2\sqrt{p/n}$, large data set.
• Cook's Distance
 $D_i = \frac{\sum_{j=1}^n (\widehat{Y_j} - \widehat{Y_{j(i)}})^2}{pMSE} = \frac{e_i^2}{pMSE} \frac{h_{ii}}{(1 - h_{ii})^2} \sim F_{p,n-p}$

where c_{kk} is the diagonal entries of $(X'X)^{-1}$ Flag: DFBETAS > 1 for small/medium data; > $2/\sqrt{n}$. Change of signs.

DFINF

One vs many trouble makers.

Multicollinearity: VIF

- **Problems of MLCL: X, Extra SSR,** $s(\hat{\beta})$, nonsignificance
- Informal Diagnosis
 - Sensitive incl/exclud of X or data
 - Nonsignificance on important predictors
 - Wrong sign of estimated β
 - Large coefficient in r_{XX} , Large R^2 among X
 - Wide confidence intervals of β
- Variation Inflation Factor (TL⁻¹) VIF_k diagonal entry of r_{XX} .

$$(VIF)_k = (1 - R_k^2)^{-1},$$

 R_k^2 : R^2 of X_k regressing on the other X's. Flag: Larger than 10 or $\gg V\overline{I}F$

Remedial Measure

For unequal error variances, high multicollinearity, influential obs

- Model Assumption
- Weighted LSE, General Error
- Transformations:
 - On Y: Box-Cox Transformation: $y^* = y^r$, say r = 0.5, 2.5 or $y^* = log(y)$, for example.
 - On *x*: Standardization, polynomials, Y regresses on $g_j(x_1, x_2, \cdots, x_{p-1}), j = 1, ..., J$
- Multicollinearity: Principal Component Analysis, Ridge Regression:

 $(X'X + cI)^{-1}$

- LASSO, Bridge regression
- Robust Regression

Model Validation

- Estimation/Fit the past; Predict the future
- Consistency with New Data
- Comparison with theoretical expectation, earlier empirical and simulation results
- Cross-Validation: Use of a holdout sample to check the model and predictive ability.

What's next?