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Learning from Data
Controlled Experiments (F = ma,PV = nRT )

Controlled Experiments with Supplemental variables

Confirmatory observational studies

Exploratory observational studies
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Data Collection and preparation
How the data are collected? (Design, Nature of the
study)

Data consistency. (Plots and numerical summaries,
logical relations)

Is this data analysis-ready? (Format checking, file
conversion, etc.)

GIGO (Garbage In; Garbage Out.)
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Objectives
Reduction of explanatory or predictor variables
Find parsimonious model with good
explanatory/prediction power. Trade-off.

Model refinement and selection
Choosing from many "good" models, checking the
adequacy of the models, sensitivity of the models, fixing
the weak spots.

Model Validation
Ready to explain what’s going on? Ready to predict
what the future will be?

Trade-off
Best explanatory/prediction power vs. Parsimony
Criteria and how to use them? "Good" models?
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Selection-I.1
R2
p = 1− SSEp

SSTO . ID those with substantial increases.
NOT the biggest one.

R2
a = 1− (n−1

n−p)
SSEp

SSTO = 1− MSEp

SSTO/(n−1)

MSEp = SSEp/(n− p).

ID those with smaller/smallest MSEp.

Γp =
E(SSEp)

σ2
− (n− 2p).

Γ̂p = Cp =
SSEp

MSE(X1,··· ,Xp−1)
− (n− 2p)

ID those Small Cp AND Cp ≈ p.

PRESSp =
∑n

i=1(Yi − Ŷi(i))
2.Prediction Sum of Squares.

ID those with small PRESSp
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Selection-I.2
AIC: Akaike’s information criterion
AICp = −2 ln likelihood+ 2p ∝ n lnSSEp − n lnn+ 2p.

ID models with smaller AIC.

BIC (or SBC in Text): Schwartz’ Bayesian information
criterion.
BICp = −2 ln likelihood+ p lnn ∝
n lnSSEp − n lnn+ (lnn)p.

ID models with smaller BIC.

Does these criteria make sense?
Increasing/Decreasing in ..
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Selection-II
All-subset Selection Y |X1, · · · , Xp−1

Best among all 2p−1 combinations.
Forward stepwise selection and other search
procedures

Forward/Backward Stepwise Selection: One at a time,
marginal effect, partial F -test

Forward/Backward Selection: Marginal effect, partial
(group) F -test
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Selection-III
General Linear Test Approach Given Y |X1, · · · , X2

Should X3, · · · , X5 be added?.
Testing H0 : Reduced vs H1 : Full

Fit the full model (Y |X1, · · · , X5) and get SSE(F ), dfF

Fit the reduced model (Y |X1, · · · , X2) and get
SSE(R), dfR

Calculate
F ∗ = SSE(R)−SSE(F )

dfR−dfF
/SSE(F )

dfF
∼ FdfR−dfF ,dfF

Then perform a α level test.
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Comments
No easy, clear-cut way to ID the best model

Usually, many "good" models rather than one best
model

Respect the hierarchy of models
Higher order terms < lower order terms
(X4 < X1)
Interaction terms < main effect terms
(X1X2 < X1 or X2)

Chapter 10 Variable Selection of Faraway, J. (2002).
Also his Chapter 11 is highly recommended
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Diagnosis
Basics
Checking the adequacy of a regression model

Improper functional form of a predictor

Outliers

Influential observation

Multicollinearity

Building RM – p. 11/19



Basics
Heuristics: When the model is correct and parameters
are estimated correctly ei ≈ εi

Assumption to be checked: ε1, · · · , εn ∼ N(0, σ2)

Various checks
1. Indepedence among errors (sequence plot, time

plot), common variance (original, stardardized) ,
normality (normal probability plots)

2. Independence of E(Y|x) ( residuals vs. fitted values),
Independence of X (vs. x)
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Improper functional form
Goal: Detect the suitable form of Y vs Xq while
X1, · · · , Xq−1 in the model.

Partial Regression Plots:
e(Y |X1, · · · , Xq−1) vs. e(Xq|X1, · · · , Xq−1).

e(Y |X1, · · · , Xq−1): residual of Y regresses on
X1, · · · , Xq−1

e(Xq|X1, · · · , Xq−1): residual of Xq regresses on
X1, · · · , Xq−1

Why bother?
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Outliers-I
The model (fitted) shouldn’t be affect by just few points.

LSE is EXTREMELY sensitive to outliers. Example.

Detection: Residual-based tests and plots towards
outlying Y . Why? What to expect?

Semistudentized residual: Same scale (Naive).
e∗i =

ei√
MSE

, ei = Yi − Ŷi

Studentized residual: In the same scale (Refined).
ri =

ei√
MSE(1−hii)

since

σ2(e) = σ2(I −H), H = X(X ′X)−1X ′.

Deleted Residuals: With or Without You. Outlying Y .
di = Yi − ˆYi(i)
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Outliers-II
Studentized Deleted Residual:
ti =

di
s(di)

where s(di) =
√

MSE(i)(1− hii)

Hat matrix Leverage values → Outlying X

0 ≤ hii ≤ 1,
∑n

i=1 hii = p.

h̄ii =
p
n . 2p/n, extreme hii, outside (0.2, 0.5)

hnew = X ′
new(X

′X)−1Xnew for hidden extrapolation.
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Influential obs

(DFFITS)i =
Ŷi − Ŷi(i)√
MSE(i)hii

Flag: If |DFFITS| > 1 for

small/medium data set or > 2
√

p/n, large data set.

Cook’s Distance

Di =
∑n

j=1(Ŷj−Ŷj(i))
2

pMSE = e2i
pMSE

hii

(1−hii)2
∼ Fp,n−p

(DFBETAS)i =
β̂k − ˆβk(i)√
MSE(i)ckk

where ckk is the diagonal entries of (X ′X)−1

Flag: DFBETAS > 1 for small/medium data; > 2/
√
n.

Change of signs.

DFINF
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Multicollinearity: VIF

Problems of MLCL: X, Extra SSR, s(β̂), nonsignificance

Informal Diagnosis
Sensitive incl/exclud of X or data
Nonsignificance on important predictors
Wrong sign of estimated β

Large coefficient in rXX , Large R2 among X

Wide confidence intervals of β

Variation Inflation Factor (TL−1) V IFk diagonal entry of
rXX .

(V IF )k = (1−R2
k)

−1,

R2
k: R2 of Xkregressing on the other X ′s.

Flag: Larger than 10 or � ¯V IF
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Remedial Measure
For unequal error variances, high multicollinearity,
influential obs

Model Assumption

Weighted LSE, General Error

Transformations:
On Y : Box-Cox Transformation: y∗ = yr, say
r = 0.5, 2.5 or y∗ = log(y), for example.
On x: Standardization, polynomials, Y regresses on
gj(x1, x2, · · · , xp−1), j = 1, .., J

Multicollinearity: Principal Component Analysis, Ridge
Regression:

(X ′X + cI)−1

LASSO, Bridge regression

Robust Regression
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Model Validation
Estimation/Fit the past; Predict the future

Consistency with New Data

Comparison with theoretical expectation, earlier
empirical and simulation results

Cross-Validation: Use of a holdout sample to check the
model and predictive ability.

What’s next?
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