1. Under the setting of simple linear regression model, write down explicitly and solve through risk minimization of

$$
\begin{align*}
() & =(-())^{2}{ }^{Z}(-())^{2}{ }_{Y, X}(\quad) \tag{1}\\
& =X_{Y \mid X}[-(\quad)]^{2}
\end{align*}
$$

Compare the with usual LSE of and comment of their differences. Do you think the question is ill-posed? Do you need extra assumptions/ conditions to answer the question?
2. Follow $\S 2.5$ in HTF and use R, reproduce Fig 2.7 and Fig 2.9. You may need to install contributed R packages such as kknn.
3. Exercise 2.1,Exercise 2.5 and Exercise 2.6 in HTF .
4. Write down the algorithm for Succession Orthogonalization and iterative residual fitting respectively. Prove (or disprove) that the obtained also solves the normal equation.
5. Let be a positive number. The ridge estimate, ${ }^{\wedge}$ ridge, minimizes a regularized risk.

$$
\hat{r}_{\text {ridge }}=\quad \beta(-)^{t}(-)+t^{t}
$$

Show that

$$
\hat{r}_{\text {ridge }}=\left(\begin{array}{l}
t \\
)^{-1} t
\end{array}\right.
$$

