Building the Regression Model

C. Andy Tsao

Department of Applied Math, National Dong Hwa University

Outline

Data Collection and preparation

- How the data are collected? (Design, Nature of the study)
- Data consistency. (Plots and numerical summaries, logical relations)
- Is this data analysis-ready? (Format checking, file conversion, etc.)
- GIGO (Garbage In; Garbage Out.)

Objectives

- Reduction of explanatory or predictor variables Find parsimonious model with good explanatory/prediction power. Trade-off.
- Model refinement and selection Choosing from many "good" models, checking the adequacy of the models, sensitivity of the models, fixing the weak spots.
- Model Validation

Selection-I.1

•
$$\mathbf{R}_p^2 = 1 - \frac{SSE_p}{SSTO}$$
.

Selection-I.2

▶ AIC: Akaike's information criterion $AIC_p = -2 \ln likelihood + 2p \propto n \ln SSE_p - n \ln n + 2p$. ID models with smaller AIC.

Selection-III

General Linear Test Approach Given $Y | X_1, \dots, X_2$

Should X_3, \dots, X_5 be added?.

Testing H_0 : Reduced vs H_1 : Full

- Fit the *full* model (Y $|X_1, \dots, X_5$) and get SSE(F), df_F
- Fit the *reduced* model (Y $|X_1, \dots, X_2|$) and get SSE(R), df_R
- Calculate

$$\mathbf{F} = \frac{SSE(R)}{df_R} \frac{SSE(F)}{df_F} / \frac{SSE(F)}{df_F} \sim \mathbf{F}_{df_R} df_{F,df_F}$$

Then perform a level test.

Comments

- No easy, clear-cut way to ID the best model
- Usually, many "good" models rather than one best model
- Respect the hierarchy of models
 Higher order terms < lower order terms
 (X⁴ < X¹)
 Interaction terms < main effect terms
 (X₁X₂ < X₁ or X₂)
- Chapter 10 Variable Selection of Faraway, J. (2002).
 Also his Chapter 11 is highly recommended

Improper functional form of a prediction

- Goal: Detect the suitable form of Y vs X_q while X_1, \dots, X_{q-1} in the model.
- Partial Regression Plots:

$$\begin{array}{l} \mathbf{e}(\mathbf{Y}\,|\mathbf{X}_1,\cdots,\mathbf{X}_{q-1}) \text{ vs. } \mathbf{e}(\mathbf{X}_q|\mathbf{X}_1,\cdots,\mathbf{X}_{q-1}). \\ \\ \mathbf{e}(\mathbf{Y}\,|\mathbf{X}_1,\cdots,\mathbf{X}_{q-1}) \text{: residual of } \mathbf{Y} \text{ regresses on } \\ \mathbf{X}_1,\cdots,\mathbf{X}_{q-1} \\ \\ \mathbf{e}(\mathbf{X}_q|\mathbf{X}_1,\cdots,\mathbf{X}_{q-1}) \text{: residual of } \mathbf{X}_q \text{ regresses on } \\ \mathbf{X}_1,\cdots,\mathbf{X}_{q-1} \end{array}$$

Why bother?

Outliers-I

The model (fitted) shouldn't be affect by just few points.

- LSE is EXTREMELY sensitive to outliers. ExampX0.
- Detection: Residual-based tests and pXots towards outlying Y. Why? What to expect?

Semistudentized residual: Same scale (Naive).

$$\mathbf{e}_i^* = rac{e_i}{\sqrt{MSE}}$$
 , $\mathbf{e}_i = \mathbf{Y}_i - \hat{\mathbf{Y}_i}$

Studentized residual: In the same scale (Refined).

$$\mathbf{r}_i = rac{e_i}{\sqrt{MSE(1-h_{ii})}}$$
 since

$$^{2}(\mathbf{e}) = ^{2}(\mathbf{I} - \mathbf{H}), \quad \mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'.$$

Deleted Residuals: With or Without You. Outlying Y.

$$\mathbf{d}_i = \mathbf{Y}_i - \hat{\mathbf{Y}_{i(i)}}$$

Outliers-II

Studentized Deleted Residual:

$$\mathbf{t}_i = rac{d_i}{s(d_i)}$$
 where $\mathbf{s}(\mathbf{d}_i) = \sqrt{\mathbf{MSE}_{(i)}(1 - \mathbf{h}_{ii})}$

■ Hat matrix Leverage values → Outlying X

$$0 \le \mathbf{h}_{ii} \le 1$$
, $n \atop i=1$ $\mathbf{h}_{ii} = \mathbf{p}$.

Afluential obs

$$\textbf{DFFITS})_i = \frac{\widehat{Y_i} - \widehat{Y_{i(i)}}}{\sqrt{\text{MSE}_{(i)}h_{ii}}} \text{ Flag: If } |\text{DFFITS}| > 1 \text{ for small/merchium 13433]} > 1$$

Multicollinearity: VIF

- Problems of MLCL: X, Extra SSR, s(^), nonsignificance
- Informal Diagnosis
 - Sensitive incl/exclud of X or data
 - Nonsignificance on important predictors
 - Wrong sign of estimated
 - Large coefficient in \mathbf{r}_{XX} , Large \mathbf{R}^2 among \mathbf{X}
 - Wide confidence intervals of
- Variation Inflation Factor (TL⁻¹) V IF_k diagonal entry of \mathbf{r}_{XX} .

$$(\mathbf{VIF})_k = (1 - \mathbf{R}_k^2)^{-1},$$

 \mathbf{R}_k^2 : \mathbf{R}^2 of \mathbf{X}_k regressing on the other $\mathbf{X}'\mathbf{s}$.

Flag: Larger than 10 or $\gg V \bar{I} F$

Model Validation

- Estimation/Fit the past; Predict the future
- Consistency with New Data
- Comparison with theoretical expectation, earlier empirical and simulation results
- Cross-Validation: Use of a holdout sample to check the model and predictive ability.

What's next?