Building the Regression Model

C. Andy Tsao

Department of Applied Math, National Dong Hwa University

Outline

Learning from Data

- **Solution** Controlled Experiments (F = ma, PV = nRT)
- Controlled Experiments with Supplemental variables
- Confirmatory observational studies
- Exploratory <u>observational</u> studies

Data Collection and preparation

- How the data are collected? (Design, Nature of the study)
- Data consistency. (Plots and numerical summaries, logical relations)
- Is this data analysis-ready? (Format checking, file conversion, etc.)
- **GIGO** (Garbage In; Garbage Out.)

Objectives

- Reduction of explanatory or predictor variables Find parsimonious model with good explanatory/prediction power. Trade-off.
- Model refinement and selection Choosing from many "good" models, checking the adequacy of the models, sensitivity of the models, fixing the weak spots.
- Model Validation Ready to explain what's going on? Ready to educt what the future will be?
- 🔹 Trade-off

Best explanatory/prediction power vs. Parsimony Criteria and how to use them? "Good" models?

Selection-I.1

R²_p = $1 - \frac{SSE_p}{SSTO}$. ID those with substantial increases. NOT the biggest one.

$$R_{a}^{2} = 1 - \left(\frac{n-1}{n-p}\right) \frac{SSE_{p}}{SSTO} = 1 - \frac{MSE_{p}}{SSTO/(n-1)} \\ MSE_{p} = SSE_{p}/(n-p). \\ ID those with smaller/smallest MSE_{p}.$$

$$\blacksquare \ \Gamma_{\mathbf{p}} = \frac{E(SSE_{\mathbf{p}})}{}$$

Selection-I.2

- ▲ AIC: Akaike's information criterion $AIC_p = -2 \ln likelihood + 2p \propto n \ln SSE_p - n \ln n + 2p.$ ID models with smaller AIC.
- BIC (or SBC in Text): Schwartz' Bayesian information criterion.
 - $\mathsf{BIC}_{\mathbf{p}} = -2\ln likelihood + p\ln n \propto$
 - $n\ln SSE_{\mathbf{p}} n\ln n + (\ln n)p.$
 - ID models with smaller BIC.
- Does these criteria make sense? Increasing/Decreasing in ..

Comments

- No easy, clear-cut way to ID the best model
- Usually, many "good" models rather than one best model
- Respect the hierarchy of models Higher order terms < loer order terms $(X^4 < X^1)$ Interaction terms < main effect terms $(X_1X_2 < X_1 \text{ or } X_2)$
- Chapter 10 Variable Selection of Faraway, J. (2002).
 Also his Chapter 11 is highly recommended

Diagnosis

Checking the adequacy of a regression model

- Improper functional form of a predictor
- Outliers
- Influential observation
- Multicollinearity

Improper functional form of a prediction

- Goal: Detect the suitable form of Y vs X_q while X_1, \dots, X_{q-1} in the model.
- Partial Regression Plots: $e(Y|X_1, \dots, X_{q-1})$ vs. $e(X_q|X_1, \dots, X_{q-1})$. $e(Y|X_1, \dots, X_{q-1})$: residual of Y regresses on X_1, \dots, X_{q-1} $e(X_q|X_1, \dots, X_{q-1})$: residual of X_q regresses on X_1, \dots, X_{q-1}

Mhy bother?

Outliers-I

The model (fitted) shouldn't be affect by just few points.

Outliers-II

Studentized Deleted Residual: $t_{i} = \frac{d_{i}}{s(d_{i})} \text{ where } s(d_{i}) = MSE_{(i)}(1 h_{ii})$ Hat matrix Leverage values ! Outlying X $0 h_{ii} 1; \prod_{i=1}^{n} h_{ii} = p:$ $h_{ii} = \frac{p}{n}: 2p/n, \text{ extreme } h_{ii}, \text{ outside } (0:2; 0:5)$ $h_{new} = X_{new}^{0}(X^{0}X)^{-1}X_{new} \text{ for hidden extrapolation.}$

Influential obs

 $(DFFITS)_{i} = \frac{\widehat{Y}_{i} - \widehat{Y}_{i(i)}}{\sqrt{MSE_{(i)h_{ii}}}} \text{ Flag: If } |DFFITS| > 1 \text{ for}$ small/medium data set or $> 2\sqrt{p/n}$, large data set. Cook's Distance $D_{\mathbf{i}} = \frac{\sum_{j=1}^{n} (\hat{\mathbf{Y}}_{j} - \hat{\mathbf{Y}}_{j(i)})^{2}}{\mathsf{nMSF}} = \frac{\mathbf{e}_{i}^{2}}{\mathsf{nMSF}} \frac{\mathbf{h}_{ii}}{(1 - \mathbf{h}_{ii})^{2}} \sim F_{\mathbf{p},\mathbf{n}-\mathbf{p}}$ $(DFBETAS)_{\mathbf{i}} = \frac{\mathbf{k} - \mathbf{k}_{\mathbf{i}}}{\sqrt{MSE_{\mathbf{i}}C\mathbf{k}\mathbf{k}}}$

where c_{kk} is the diagonal entries of $(X'X)^{-1}$ Flag: DFBETAS > 1 for small/medium data; > $2/\sqrt{n}$. Change of signs.

🐽 DF<u>INF</u>

One vs many trouble makers.

Multicollinearity: VIF

Problems of MLCL: X, Extra SSR, s(^A), nonsignificance
 Informal Diagnosis
 Sensitive incl/exclud of X or data
 Nonsignificance on important predictors
 Wrong sign of estimated ^A
 Large coefficient in r_{XX} , Large R^2 among X

Remedial Measure

For unequal error variances, high multicollinearity, influential obs

Model Validation

