Linear Methods for Regression

C. Andy Tsao

Dept. of Applied Math National Dong Hwa University

October 20, 2006

Statistical Decision Theory: Versions of Expected Losses

```
[Point Estimation Problem]

Let X_{-}, \dots, X_{n} \sim f_{\theta}, for example, pdf of N(\theta, \sigma^{2}) or pmf of Bernoulli(\theta) Object|Find \hat{\theta}_{*}
```

Complete Class Theorem

- ▶ A class C is *complete* if for any decision δ not in C, there exists a decision δ' which dominates δ .
- ▶ Under some regularity conditions, the class of eneralized Bayes procedures form a complete class.
- Implication: Search no further. ork with eneralized Bayes procedures.

Consider $X \in \mathbb{R}^p, Y \in \mathbb{R}$ with joint prob distribution $P_{Y,X}$. Seek a ftn f for predicting Y given X. Under $L(Y, f(X)) = (Y - f(X))^2$, squaed error loss, in the spirit of Bayes risk, find f min

$$EPE(f) E(Y - f(X))^2 (y f(x))^2 dP_{Y,X}(y,x) (1)$$

KNN as (Y|)

Let $T (Y_i, X_i)_i^n$ be the training data.

- ▶ $\hat{f}(x)$ Ave $(y_i|x_i \in N_k(x))$, where "Ave" average, $N_k(x)$ is the neighborhood containing the k points in T closest to x.
- expectation is approximated by averagig over sample space .
- conditioning at a point is relaxed to conditioning on some region "clos

KNN as (Y|)

- ▶ $\hat{f}(x)$ Ave $(y_i|x_i \in N_k(x))$, whee "Ave" average, $N_k(x)$ is the neghboghd cn523(t)-1.aining khpeints in T closest to x.
- epecation is appoimated by averaging overamplepace
- ► cnditioning at a point iseaxedo conditioning on some region "cose" to the 523(t)-1.age point

How good is NN Ratonale Serc is over

- Sample sizesually small
- As p inceases, $N_k(x)$ becmes huge
- Convegec
 - Cverge holds. $\hat{f} \to f$ as $n \to \infty$
 - Slower rate of convergence.

LS as
$$(Y|)$$

- $ightharpoonup f(x) \approx x^T \beta$
- ▶ Plug this *f* int1,2.97773TR10310.9091Tf74.070Td[(S)4.6255]TER40

KNN vs. LS

- ▶ LS assumes $f(x) \approx$ globally by a linear function
- NN assumes $f(x) \approx$ locally by a const function
- Functional approximation